Filtration Associated to Torsion Semi-stable Representations
نویسنده
چکیده
— Let p be an odd prime, K a finite extension of Qp and G := Gal(Qp/K) the Galois group. We construct and study filtration structures associated torsion semi-stable representations of G. In particular, we prove that two semi-stable representations share the same p-adic Hodge-Tate type if they are congruent modulo pn with n > c′, where c′ is a constant only depending on K and the differences between the maximal and minimal Hodge-Tate weights of two representations. As an application, we reprove a part of Kisin’s result: the existence of a quotient of the universal Galois deformation ring which parameterizes semi-stable representations with a fixed p-adic Hodge-Tate type. Résumé. — Soient p un nombre premier impair, K une extension finie de Qp et G := Gal(Qp/K) son groupe de Galois absolu. Nous construisons et étudions différentes filtrations associées aux représentations semi-stables de G. Nous démontrons en particulier que deux représentations semi-stables de G ont le même type de Hodge–Tate si elles sont congrues modulo pn avec n > c′, où c′ est une constante dépendant uniquement de K et des différences entre les plus grands et les plus petits poids de Hodge-Tate des deux représentations. Comme application, nous redémontrons une partie d’un résultat de Kisin portant sur l’existence d’un quotient de l’anneau des déformations universelles paramétrisant les représentations semi-stables dont le type de Hodge-Tate est fixé.
منابع مشابه
On a Ramification Bound of Semi-stable Torsion Representations over a Local Field
Let p be a rational prime, k be a perfect field of characteristic p, W = W (k) be the ring of Witt vectors, K be a finite totally ramified extension of Frac(W ) of degree e and r be a nonnegative integer satisfying r < p− 1. Let V be a semi-stable p-adic GK representation with Hodge-Tate weights in {0, . . . , r}. In this paper, we prove the upper numbering ramification group G (j) K for j > u(...
متن کاملOn a Ramification Bound of Torsion Semi-stable Representations over a Local Field
Let p be a rational prime, k be a perfect field of characteristic p, W = W (k) be the ring of Witt vectors, K be a finite totally ramified extension of Frac(W ) of degree e and r be a non-negative integer satisfying r < p − 1. In this paper, we prove the upper numbering ramification group G (j) K for j > u(K, r, n) acts trivially on the p-torsion semi-stable GK-representations with Hodge-Tate w...
متن کاملQuasi-semi-stable representations
Fix K a p-adic field and denote by GK its absolute Galois group. Let K∞ be the extension of K obtained by adding p-th roots of a fixed uniformizer, and G∞ ⊂ GK its absolute Galois group. In this article, we define a class of p-adic torsion representations of G∞, named quasi-semi-stable. We prove that these representations are “explicitly” described by a certain category of linear algebra object...
متن کاملSOME BOUNDS FOR RAMIFICATION OF p-TORSION SEMI-STABLE REPRESENTATIONS
Let p be an odd prime, K a finite extension of Qp, GK = Gal(K̄/K) its absolute Galois group and e = e(K/Qp) its absolute ramification index. Suppose that T is a p-torsion representation of GK that is isomorphic to a quotient of GK -stable Zp-lattices in a semi-stable representation with HodgeTate weights {0, . . . , r}. We prove that there exists a constant μ depending only on n, e and r such th...
متن کاملModuli Space of Principal Sheaves over Projective Varieties
Let G be a connected reductive group. The late Ramanathan gave a notion of (semi)stable principal G-bundle on a Riemann surface and constructed a projective moduli space of such objects. We generalize Ramanathan’s notion and construction to higher dimension, allowing also objects which we call semistable principal G-sheaves, in order to obtain a projective moduli space: a principal G-sheaf on a...
متن کامل